کتاب های برچسب data
تاریخ: ۲۱:۱۱:۳۶ ۱۳۹۹/۵/۳۰ پنج شنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Database | Python | Data Mining | Video |

پایگاه داده‌ها بخشی جدایی ناپذیر از علوم داده هستند و هر برنامه نویسی که با داده‌ها سر و کار دارد، باید بتواند با یک پایگاه داده نیز کار کند. در دوره ویدیویی Understanding Databases with SQLAlchemy: Python Data Playbook موسسه Pluralsight که توسط Xavier Morera تدریس شده است،‌ شما دانش بنیادی برای کار با پایگاه‌های داده با استفاده از SQLAlchemy را یاد خواهید گرفت.

در این دوره ابتدا نحوه query‌ زدن را یاد می‌گیرید. سپس چگونگی ایجاد پایگاه‌های داده و جداول و پر کردن آن‌ها با داده‌ها را یاد می‌گیرید. در پایان، شما نحوه دستکاری داده هایی که درج کرده اید و کوئری گرفته اید را خواهید آموخت. پس از اتمام این دوره، مهارت‌ها و دانش لازم برای کار کردن با پایگاه داده‌ها با استفاده پایتون و SQLAlchemy را در اختیار خواهید داشت.

تعداد بازدید: ۲۵۷
دیدگاه ها: ۰
تاریخ: ۲۰:۱۰:۱۳ ۱۳۹۹/۵/۳۰ پنج شنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

فرمت‌های تصویری برداری مثل SVG، مزایای بسیاری نسبت به فرمت‌های scalar همچون PNG و JPEG دارند. با استفاده از SVG، می‌توانید تصاویری با کیفیت بالا و حجم کم ایجاد کنید که هم در دستگاه هایی با وضوح پایین به خوبی نمایش داده می‌شوند و هم می‌توان آن‌ها را بدون ایجاد اعوجاج، بزرگنمایی کرد و حرکت داد. در دوره ویدیویی Pygal: Python Data Playbook موسسه Pluralsight ‌که توسط Kishan Iyer تدریس شده است، شما با استفاده از Pygal، توانایی ساختن مجموعه ای از تصاویر و تبدیل آنها به فرمت SVG را بدست می‌آورید.

ابتدا مزایای کار با Pygal را برای ساخت SVG‌ها خواهید آموخت و جایگاهی که Pygal نسبت به سایر بسته‌های تصویرسازی همچون Matplotlib، Seaborn، Bokeh و Plotly دارد را درک خواهید کرد. در ادامه نحوه ساخت مجموعه ای از تصویر‌ها در Pygal را از درون حافظه و همچنین فایل‌ها بررسی خواهید کرد. سپس می‌توانید یک تصویر سازی از جمله نمودارهای ساده مانند گراف‌های خطی، درختی و میله ای و همچنین انواع تخصصی مانند TreeMaps و Sparklines را بسازید. شما انواع مختلف سبک‌ها و پیکربندی هایی که برای کنترل ظاهر نمودار‌ها می‌توان استفاده کرد را یاد خواهید گرفت. شما همچنین با سبک‌های سفارشی و پارامتری تعبیه شده و همچنین تنظیمات Chart، Serie و Value کار خواهید کرد.

در پایان، شما چگونگی ارائه تصویر سازی‌های Pygal را در قالب‌های تصویری و غیر تصویری برای انتقال‌های آنلاین از جمله XML element trees و base64 encoded یاد خواهید گرفت. شما همچنین با ساختن یک برنامه وب با استفاده از میکرو فریمورک Flesk به منظور ارائه و نمایش نمودار‌های Pygal این دوره را کامل خواهید کرد. وقتی که این دوره را به پایان رساندید، شما دانش و مهارت‌های لازم برای نمایش تصویر سازی‌ها در Pygal را برای استفاده از مزایای فرمت Scalable Vector Graphics، در اختیار خواهید داشت.

تعداد بازدید: ۱۹۵
دیدگاه ها: ۰
تاریخ: ۲۲:۲۴:۴۶ ۱۳۹۹/۵/۲۸ سه شنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

با توجه به اینکه علوم داده‌ها و تجزیه و تحلیل داده‌ها روز به روز محبوب‌تر و تخصصی‌تر می‌شوند، تعداد و تنوع ابزارها و فن آوری‌های موجود، اغلب بسیار زیاد به نظر می‌رسند. در دوره ویدیویی Leveraging Online Resources for Python Analytics موسسه Pluralsight که توسط Janani Ravi تدریس شده است، شما توانایی پیدا کردن منابعی را پیدا خواهید کرد که به شما کمک می‌کنند تا مسئله خود را به درستی تنظیم و حل کنید.

در ابتدا، تعدادی از کتابخانه‌های مهم تصویر سازی، چارچوب‌های یادگیری ماشین، یادگیری عمیق و راهکار‌های مبتنی بر ابر را بررسی می‌کنید. در ادامه، مزایای استفاده از ابزاری مانند BigML را بررسی خواهید کرد که پلتفرمی برای ساخت مدل‌های ML است که بخش عمده ای از پیچیدگی‌های اساسی را حذف می‌کند. دموکراسی سازی ML، امروزه گرایش مهمی است و فناوری هایی مانند BigML در صدر این گرایش قرار دارند. برای مثال شما خواهید دید که چگونه BigML بدون عیب و نقص تصویر سازی‌های شناخته شده به عنوان partial dependency plots را یکپارچه می‌کند تا نتایج تعداد زیادی از پیش بینی‌های ML را به شکلی ارائه دهد که به راحتی قابل فهم باشند و بتوانید دقیقا بفهمید که مدل ML شما چه کاری انجام می‌دهد.

در آخر، شما با کار با Google Colab که یک روش مجانی تحت وب برای ساخت مدل‌ها است، دانش خود را کامل می‌کنید. مدل‌ها در notebook‌های Jupyter که در Google Drive موجود هستند و بر روی ماشین‌های مجازی در ابر اجرا می‌شوند، میزبانی می‌شوند. وقتی که این دوره را به پایان رساندید، شما مهارت‌ها و دانش لازم برای شناسایی سریع و موثر منابع و کتابخانه‌های ارزشمند آنلاین که به شما به عنوان یک متخصص علوم داده به شما کمک خواهند کرد را در اختیار خواهید داشت.

تعداد بازدید: ۱۸۶
دیدگاه ها: ۰
تاریخ: ۲۲:۴۱:۳۰ ۱۳۹۹/۵/۲۷ دوشنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

در قلب هر پروژه موفقیت آمیزی که با مجموعه داده‌های دنیای واقعی درگیر است، دانش کاملی از چگونگی تمیز کردن مجموعه داده‌ها از داده‌های مفقود، بد و یا نادرست وجود دارد. در دوره ویدیویی Cleaning Data: Python Data Playbook موسسه Pluralsight که توسط Chris Achard تدریس شده است، شما نحوه استفاده از pandas را برای تمیز کردن dataset‌های واقعی یاد می‌گیرید.

در این دوره ابتدا نحوه درک، نمایش و بررسی داده هایی که در اختیار دارید را یاد می‌گیرید. در ادامه، نحوه دسترسی به داده هایی را که فقط می‌خواهید در دیتاست خود نگه دارید، بررسی خواهید کرد. سرانجام، روشهای مختلفی برای مدیریت داده‌های بد و مفقود شده را یاد خواهید گرفت. وقتی که این دوره را به پایان رساندید، شما دانش بنیادین تمیز کردن dataset‌های واقعی با pandas را در اختیار خواهید داشت که به شما کمک می‌کند تا به کار با علم داده دنیای واقعی یا مسائل یادگیری ماشین ادامه دهید.

تعداد بازدید: ۱۹۶
دیدگاه ها: ۰
تاریخ: ۲۲:۵۱:۲۶ ۱۳۹۹/۵/۲۲ چهارشنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

پایتون یکی از قدرتمندترین و پرکاربردترین زبانها برای کار با داده‌ها است. در دوره ویدیویی Importing Data: Python Data Playbook موسسه Pluralsight که توسط Xavier Morera تدریس شده است، شما دانش بنیادین وارد کردن داده‌ها با پایتون را فرا خواهید گرفت و توانایی وارد کردن داده‌ها از چندین قالب مختلف فایل، از جمله: متن، داده‌های جدولی، قالب‌های باینری و همچنین از پایگاه داده‌ها را به وسیله زبان پایتون، به دست خواهید آورد.

ابتدا نحوه وارد کردن فایل‌های متنی و CSV را یاد خواهید گرفت. در ادامه، نحوه وارد کردن داده‌ها از فایل هایJSON ،XML ،SAS ،Stata ،HDF5 ، Matlab، Pickle و موارد دیگر را یاد خواهید گرفت. سرانجام، چگونگی وارد کردن داده‌های رابطه ای از پایگاه‌های داده از جمله: SQLite، MySQL و PostgreSQL را بررسی خواهید کرد. پس از اتمام این دوره، مهارت و دانش لازم برای وارد کردن داده‌ها به پایتون را برای تجزیه و تحلیل، تصویر سازی و به طور کلی کار با داده‌ها را در اختیار خواهید داشت.

تعداد بازدید: ۲۰۳
دیدگاه ها: ۰
تاریخ: ۰:۱۰:۵۶ ۱۳۹۹/۵/۲۱ سه شنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

یادگیری و مهارت پیدا کردن در پایتون، یکی از بهترین تصمیماتی است که یک برنامه نویس می‌تواند بگیرد. سادگی پایتون به همراه بسیاری از کتابخانه‌های در دسترس، آن را به یکی از پر بازده‌ترین زبانهایی که می‌توانید استفاده کنید، تبدیل کرده است. دوره ویدیویی‌ Programming Python Using an IDE موسسه Pluralsight که توسط Xavier Morera تدریس شده است، به شما در استفاده از IDE‌های پایتون کمک می‌کند تا مهارت کد نویسی خود را ارتقا دهید.
در ابتدا، شما در مورد انتخاب IDE‌های معروف و چگونگی کمک آنها به شما در بهبود بهره وری خود، یاد خواهید گرفت. در ادامه، در مورد بسیاری از ویژگی هایی که IDE‌ها را برای ایجاد برنامه‌ها از جمله برجسته کردن نحو، ریفکتور کردن، بررسی کد و موارد دیگر بسیار عالی می‌کند، خواهید آموخت. همچنین برخی از سایر قابلیت‌ها که به شما در اجرا، اشکال زدایی، تست واحد و کنترل کد منبع به شما کمک می‌کنند را یاد می‌گیرید. سرانجام، خواهید دید که چگونه برخی از IDE‌ها دارای ویژگی هایی هستند که برای پایتون علمی و ایجاد برنامه‌های علوم داده ساخته شده اند. در پایان این دوره، شما می‌دانید و درک خواهید کرد که چگونه IDEها می‌توانند به شما کمک کنند تا یک توسعه دهنده پربار‌تر باشید.

 

تعداد بازدید: ۲۶۰
دیدگاه ها: ۰
تاریخ: ۲۱:۵۴:۲۰ ۱۳۹۹/۵/۶ دوشنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

زبان برنامه نویسی پایتون، بیشتر به این دلیل که تجزیه و تحلیل و کار با داده‌ها را به شدت آسان کرده است، در سال‌های اخیر به شدت محبوب شده است. Jupyter به جای یک IDE تمام عیار یک محیط اجرایی است، اما با این وجود، notebook‌ها دارای چندین قابلیت مهم هستند که ارزش درک کامل را دارند. در دوره ویدیویی Create and Share Analytics with Jupyter Notebooks موسسه Pluralsight که توسط Janani Ravi تدریس شده است، یاد می‌گیرید که چگونه نوتبوک‌های Jupyter با ارائه یک محیط تعاملی بسیار بصری و تعاملی برای اجرای برنامه‌های پایتون، عامل اصلی محبوبیت پایتون هستند.

ابتدا یاد می‌گیرید که چگونه با نوتبوک‌های Jupyter شروع به کار کنید و چگونه می‌توانید از ویژگی‌های آن مانند markdown برای تقویت خوانایی کد خود استفاده کنید. در ادامه، خواهید فهمید که چگونه قابلیت‌های پیشرفته‌تری مانند توابع جادویی کار می‌کنند و چگونه نسل بعدی Jupyter به نام JupyterLab، حتی بیشتر به سمت یک محیط توسعه تمام عیار پیش می‌رود. در پایان، شما می‌توانید دانش خود را با کار با notebook‌های Jupyter میزبانی شده ابری بر روی سکو‌های ابری بزرگ، کامل کنید. وقتی که این دوره را تمام کردید، شما مهارت‌ها و دانش لازم را برای بکارگیری تمام قدرت notebook‌های Jupyter و Jupyterlab را در اختیار خواهید داشت، به خصوص در زمینه notebook‌های میزبانی شده ابری برای موارد استفاده توزیع شده و مشارکتی.

تعداد بازدید: ۲۳۴
دیدگاه ها: ۰
تاریخ: ۱۸:۱۸:۴۸ ۱۳۹۹/۵/۲ پنج شنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

پایتون در سال‌های اخیر به شدت محبوب شده است و به عنوان فناوری منتخب تحلیل گران و دانشمندان داده ظاهر شده است. در دوره ویدیویی Python for Data Analysts موسسه Pluralsight‌ که توسط Janani Ravi تدریس شده است، شما توانایی نوشتن برنامه‌های پایتون و استفاده از ساختار‌های اساسی برنامه نویسی پایتون و تجزیه و تحلیل داده‌ها را به دست خواهید آورد.

در این دوره ابتدا یاد خواهید گرفت که چگونه زبان‌های برنامه نویسی مانند Python، صفحات گسترده مانند Microsoft Excel و فن آوری‌های مبتنی بر SQL مانند پایگاه داده‌ها با یکدیگر متفاوت هستند و همچنین چگونه با یکدیگر همکاری می‌کنند. در ادامه وارد برنامه نویسی پایتون و نصب آن می‌شوید و با برنامه‌های ساده کار خود را شروع می‌کنید. سپس شما روش هایی را که در آن‌ها از متغیرها برای نگهداری داده‌ها استفاده می‌کنند را درک خواهید کرد و اینکه چگونه انواع داده ساده و پیچیده در پایتون در معنا متفاوت هستند. در پایان، شما می‌توانید دانش خود را با کار با ارزیابی شرطی و با استفاده از عبارات if، حلقه‌ها و توابع کامل کنید. همچنین شما می‌آموزید که چگونه پایتون با توابع به عنوان موجودیت‌های خیلی عالی که عامل اصلی برنامه نویسی تابعی هستند برخورد می‌کند. وقتی که این دوره را تمام کردید، مهارت و دانش  لازم را برای شناسایی موقعیت هایی که پایتون انتخاب مناسبی برای شماست، و همچنین اجرای برنامه‌های ساده اما قابل اطمینان را با استفاده از پایتون در اختیار خواهید داشت.

تعداد بازدید: ۳۴۳
دیدگاه ها: ۰
تاریخ: ۲۱:۳۹:۲۱ ۱۳۹۹/۴/۲۹ یکشنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

پایتون در سال‌های اخیر از نظر محبوبیت به حد انفجار رسیده است، و بیشتر به این دلیل که تجزیه و تحلیل و کار با داده‌ها را بسیار ساده کرده است. با وجود موفقیت بزرگ خود به عنوان یک ابزار نمونه اولیه سازی، پایتون هنوز هم برای توسعه بزرگ و در مقیاس سازمانی نسبتاً تأیید نشده است. در دوره ویدیویی Building Your First Python Analytics Solution موسسه Pluralsight که توسط Janani Ravi‌ تدریس شده است، شما توانایی شناسایی و استفاده از محیط توسعه و اجرای مناسب را برای سازمان خود به دست خواهید آورد.

در ابتدا، خواهید آموخت که چگونه Jupyter notebooks با وجود محبوبیت زیادشان، به اندازه محیط‌های توسعه یکپارچه حرفه ای یا IDE‌ها قوی نیستند. در ادامه خواهید فهمید که چگونه محیط‌های اجرایی مختلف، روش‌های دیگری برای پیکربندی کتابخانه‌های پایتون ارائه می‌دهند، و بطور مشخص چگونه دو تا از محبوب‌ترین این کتابخانه‌ها یعنی Conda و Pip با یکدیگر مقایسه می‌شوند. شما همچنین چندین محیط توسعه مختلف از جمله IDLE ،PyCharm ،Eclipse و Spyder را بررسی خواهید کرد. سرانجام، با اجرای پایتون در محیط‌های ابری شاخص، از جمله AWS ،Microsoft Azure و GCP، دانش خود را کامل می‌کنید. با به پایان رساندن این دوره، شما مهارت و دانش لازم برای شناسایی محیط‌های توسعه و اجرای صحیح برای Python را در بستر سازمانی خود در اختیار خواهید داشت.

تعداد بازدید: ۳۲۸
دیدگاه ها: ۰
تاریخ: ۲۲:۳۳:۴۹ ۱۳۹۹/۴/۲۳ دوشنبه
توسط: MotoMan
امتیاز: ۰
برچسب ها: data | Python | Data Mining | Video |

در این دوره یاد می‌گیرید که چگونه داده‌ها را از یک صفحه وب ایستا با BeautifulSoup4 استخراج کرده و آن را به یک گزارش گرافیکی قابل توجه از داده‌ها در Jupyter Notebook تبدیل کنید. در دوره ویدیویی Web Scraping: Python Data Playbook موسسه Pluralsight که توسط Ian Ozsvald تدریس شده است، شما توانایی استخراج داده‌ها و ارائه گرافیکی آن‌ها را به دست خواهید آورد.

در این دوره، ابتدا استخراج داده‌ها با استفاده از ماژول درخواست‌ها و BeautifulSoup4 را یاد می‌گیرید. سپس نحوه نوشتن یک ماژول استخراج قابل اطمینان که توسط آزمون واحد پشتیبانی می‌شود را بررسی خواهید کرد. سرانجام، چگونگی تبدیل ستون‌های داده به گزارشی گرافیکی که نظر همکاران شما را تغییر می‌دهد را خواهید آموخت. وقتی که این دوره را به پایان رساندید شما دانش و مهارت استخراج وب که برای ایجاد یک Jupyter Notebook گرافیکی قابل توجه بدون استفاده از API  لازم است را در اختیار خواهید داشت.

تعداد بازدید: ۳۸۴
دیدگاه ها: ۰
تاریخ: ۲۱:۶:۸ ۱۳۹۹/۳/۱۷ شنبه
توسط: MotoMan
امتیاز: ۲

کتاب Introduction to Python for Computer Science and Data Science دایتل، رویکردی منحصر به فرد برای آموزشی برنامه نویسی مقدماتی پایتون ارائه می‌دهد که برای مخاطبان علوم کامپیوتر و علوم داده مناسب است.

با ارائه جدیدترین موضوعات و برنامه ها، این کتاب با ضمیمه‌های مرسوم وسیع و همچنین ضمیمه‌های Jupyter Notebooks همراه شده است. مجموعه داده‌های دنیای واقعی و فناوری‌های هوش مصنوعی، به دانشجویان این امکان را می‌دهند تا در تجارت، صنعت، دولت و دانشگاه تفاوتی ایجاد کنند. صد‌ها مثال، تمرین، پروژه (EEPs) و پیاده سازی موارد مطالعاتی، به دانشجویان مقدمه ای جذاب، چالش برانگیز و سرگرم کننده از برنامه نویسی پایتون و علم داده عملی ارائه می‌دهد.

معماری ماژولار این کتاب به مدرسان این امکان را می‌دهد تا به راحتی متن این کتاب را با طیف وسیعی از دوره‌های علوم کامپیوتر و علوم داده که برای تعداد زیادی از رشته‌ها ارائه شده اند، وفق دهند. مدرسان علوم کامپیوتر به هر اندازه ای که دوست دارند می‌توانند مباحث مربوط به علوم داده و هوش مصنوعی را در این درس ادغام کنند و مدرسان علوم داده نیز می‌توانند به هر اندازه ای که دوست دارند پایتون را ادغام کنند.

تعداد بازدید: ۹۸۴
دیدگاه ها: ۰
تاریخ: ۱۹:۴۸:۲۰ ۱۳۹۸/۶/۱۹ سه شنبه
توسط: MotoMan
امتیاز: ۳
برچسب ها: SQL | data | nosql | Database |

اگر در سالهای اخیر در مهندسی نرم افزار ، به خصوص سیستم‌های سمت سرور و backend کار کرده اید، احتمالا با تعداد زیادی واژه مد روز در زمینه‌های ذخیره و پردازش داده‌ها بمباران شده اید. NoSQL، کلان داده، Web-scale، Sharding، Eventual consistency، ACID، تئوری CAP، سرویس‌های ابری، MapReduce و Real-Time. در دهه گذشته ما شاهد بهبود‌های جالب بسیاری در بانکهای اطلاعاتی، سیستمهای توزیع شده و نحوه ساختن برنامه‌ها با استفاده از آن‌ها هستیم.

برنامه‌های data-intensive، با استفاده از پیشرفت‌های این تکنولوژی ها، مرزهای آنچه که امکان پذیر بوده است را جابه جا کرده اند. ما به برنامه ای data-intensive می‌گوییم که اگر چالش اصلی آن حجم داده ها، پیچیدگی داده‌ها و یا سرعت تغییر داده‌ها باشد و این بر خلاف برنامه‌های  compute-intensive است که سایکل‌های CPU گلوگاه هستند.

ابزار‌ها و تکنولوژی هایی که به برنامه‌های data-intensive در ذخیره کردن و پردازش داده‌ها کمک می‌کنند، به سرعت با این تغییرات سازگار شده اند. انواع جدید سیستم‌های پایگاه داده «NoSQL»، توجه زیادی را به خود جلب کرده اند، اما صف‌های پیام، کش ها، ایندکس‌های جستجو، فریمورک‌ها برای پردازش استریم و batch و تکنولوژی‌های مرتبط نیز خیلی مهم هستند. برنامه‌های زیادی هستند که از ترکیب این‌ها استفاده می‌کنند.

خوشبختانه، در پشت تغییرات سریع فناوری، اصول ثابتی وجود دارند که عوض نمی‌شوند و مهم نیست که از چه نسخه‌ی ابزار خاصی استفاده می‌کنید. اگر آن اصول را خوب بفهمید، شما در موقعیتی قرار می‌گیرید که ببینید هر ابزاری به درد کجا می‌خود و چگونه به خوبی از آن استفاده کنید و از مشکلات جلوگیری کنید. این جایی است که این کتاب وارد می‌شود.

هدف کتاب طراحی برنامه‌های Data-Intensive، کمک به شما در پیدا کردن مسیر در بین چشم انداز متنوع و به سرعت در حال تغییر فناوری‌ها برای پردازش و ذخیره سازی داده‌ها است. این کتاب، آموزش یک ابزار خاص نیست و همچنین کتاب درسی پر از تئوری خشک نیست. در عوض ما به مثال هایی از سیستم‌های داده موفق خواهیم پرداخت: فناوری هایی که پایه و اساس بسیاری از برنامه‌های محبوب را تشکیل می‌دهند و باید نیازمندی‌های مقیاس پذیری، کارایی و قابلیت اطمینان را هر روزه تامین کنند.

در ادامه ما وارد جزئیات درون این سیستم‌ها می‌شویم، الگوریتم‌های کلیدی آن‌ها را از هم جدا می‌کنیم و در مورد اصولشان و مصالحه هایی که انجام داده اند بحث می‌کنیم. در این سفر ما سعی خواهیم کرد تا روش‌های مفید فکر کردن درباره سیستم‌های داده‌ها را پیدا کنیم؛ نه فقط در مورد نحوه کار آن ها، بلکه چرا این گونه کار می‌کنند و این که چه سوالاتی را باید بپرسیم.

تعداد بازدید: ۱۴۶۲
دیدگاه ها: ۰
تاریخ: ۱۸:۱۵:۷ ۱۳۹۸/۳/۲۳ پنج شنبه
توسط: MotoMan
امتیاز: ۲
برچسب ها: SQL | SQL Server | data | Database | Data Mining |

مهارت‌های پایگاه داده در بین پر تقاضا‌ترین مهارت‌های دنیای IT قرار دارد. با استفاده از ویرایش سیزدهم کتاب طراحی، پیاده سازی و مدیریت سیستم‌های پایگاه داده، شما پایه ای قوی در طراحی و پیاده سازی پایگاه‌های داده با استفاده از رویکردی کاربردی و ساده به دست خواهید آورد.

ویرایش سیزدهم کتاب Database Systems، نحوه‌ی طراحی صحیح پایگاه‌های داده، نوشتن کوئری‌های SQL‌ را به همراه مثال‌های زیاد که در دنیای واقعی کاربرد دارند را به شما یاد می‌دهد. همچنین در این کتاب مباحث تجزیه و تحلیل کلان داده و NoSQL به همراه تکنولوژی‌های مرتبط به Hadoop نیز بررسی شده اند.

تعداد بازدید: ۱۵۱۰
دیدگاه ها: ۰
تاریخ: ۹:۱۲:۱۵ ۱۳۹۲/۱۲/۹ جمعه
توسط: MotoMan
امتیاز: ۷
برچسب ها: SQL | data | Database |

داده‌ها تبدیل به یک دارایی با ارزش برای دولت ها، صنایع و اشخاص شده است و مدیریت این داده‌ها هنوز به عنوان یک چالش تکنیکی بحرانی باقی مانده است. چالش‌های مدیریت ترابایت‌ها واگزابایت‌ها داده و گسترش مدیریت داده‌ها برای شامل شدن دیگر قیود داده‌ها در هنگام نگهداری اصول مدیریت پایگاه داده ( استقلال داده ها، تمامیت داده ها، ثبات داده‌ها و...) امروزه از جمله مسائل مهمی برای هر سازمانی هستند.
چاپ شدن در پنج جلد و در بیش از 4000 صفحه، دایره المعارف سیستم‌های پایگاه داده دسترسی سریعی به مفاهیم اطلاعات مرتبط در همه‌ی زمینه‌ها از جمله پایگاه داده‌های بسیار بزرگ، مدیریت داده‌ها و سیستم‌های پایگاه داده فراهم کرده است. این مرجع جامع دارای بیش از 1300 مثال است که به ترتیب حروف الفبا مرتب شده اند. هر موضوع دارای یک مقدمه، شناخت مفهوم و روش‌ها و الگوریتم‌های پیاده سازی است و به مرجع و مربی و تاریخ آن ارجاعه داده شده است.

 

تعداد بازدید: ۴۵۵۱
دیدگاه ها: ۰
تاریخ: ۱۱:۲۵:۷ ۱۳۹۲/۹/۲۸ پنج شنبه
توسط: MotoMan
امتیاز: ۷

بازیابی اطلاعات (به انگلیسی: Information Retrieval)‏ به فناوری و دانش پیچیدهٔ جستجو و استخراج اطلاعات، داده‌ها، فراداده‌ها در انواع گوناگون منابع اطلاعاتی مثل بانک اسناد، مجموعه‌ای از تصاویر، و وب گفته می‌شود.

با افزایش روز افزون حجم اطلاعات ذخیره شده در منابع قابل دسترس و گوناگون، فرایند بازیابی و استخراج اطلاعات اهمیت ویژه‌ای یافته است. اطلاعات مورد نظر ممکن است شامل هر نوع منبعی مانند متن، تصویر، صوت و ویدئو باشد. بر خلاف پایگاه داده‌ها، اطلاعات ذخیره شده در منابع اطلاعاتی بزرگ مانند وب و زیرمجموعه‌های آن مانند شبکه‌های اجتماعی از ساختار مشخصی پیروی نمی‌کنند و عموماً دارای معانی تعریف شده و مشخصی نیستند. هدف بازیابی اطلاعات در چنین شرایطی، کمک به کاربر برای یافتن اطلاعات مورد نظر در انبوهی از اطلاعات ساختارنایافته است.

جستجوگرهای گوگل، یاهو و بینگ سه نمونه از پراستفاده‌ترین سیستم‌های بازیابی اطلاعات هستند که به کاربران برای بازیابی اطلاعات متنی، تصویری، ویدئویی و غیره کمک می‌کنند.

«بازیابی اطلاعات» در برخی منابع فارسی به اشتباه به جای ذخیره و بازیابی داده‌ها که به معنای دانش شناخت رسانه‌های ذخیره‌سازی فیزیکی است، به کار رفته است.

این جزوه ذخیره و بازیابی اطلاعات تدریس شده توسط استاد محمد رضا برکتین در دانشگاه آزاد نجف آباد است که توسط یکی از دانشجویان ایشان گرد آوری شده است.

تعداد بازدید: ۳۴۴۷
دیدگاه ها: ۰
loading...

لطفا منتظر بمانید...