کتاب های برچسب recommender-systems
تاریخ: ۱۴:۵:۱ ۱۳۹۹/۸/۱۳ سه شنبه
توسط: MotoMan
امتیاز: ۱

یادگیری ماشین (ML) رویکردی محبوب برای حل انواع مختلفی از مسائل است. ML به شما امکان می‌دهد تا بدون دانستن الگوریتمی سر راست برای حل مسائل، کار‌های مختلفی انجام دهید. ویژگی اصلی الگوریتم‌های یادگیری ماشین، توانایی آنها در یادگیری راه حل‌ها با استفاده از مجموعه ای از نمونه‌های آموزشی یا حتی بدون آنها است. امروزه، یادگیری ماشین رویکردی گسترده است که در زمینه‌های مختلف صنعت استفاده می‌شود. نمونه هایی از زمینه هایی که یادگیری ماشین از الگوریتم‌های سر راست کلاسیک بهتر عمل می‌کند، شامل بینایی ماشین، پردازش زبان طبیعی و سیستم‌های توصیه گر است. در کتاب Hands-On Machine Learning with C++، الگوریتم‌های یادگیری ماشین تحت نظارت و بدون نظارت را با استفاده از کتابخانه‌های سی پلاس پلاس مانندPyTorch C++ API ، Caffe2، Shogun،Shark-ML ، mlpack و dlib، و با کمک مثال‌ها و مجموعه داده‌های واقعی پیاده سازی خواهید کرد.

زبان ++C می‌تواند باعث شود که مدل‌های یادگیری ماشین شما سریعتر و کارآمدتر اجرا شوند. این راهنمای مفید به شما کمک می‌کند تا اصول یادگیری ماشین (ML) را بیاموزید و به شما نشان می‌دهد که چگونه از کتابخانه‌های سی پلاس پلاس برای بهره برداری بیشتر از داده‌های خود استفاده کنید. این کتاب با رویکرد مثال محور خود، یادگیری ماشین را با زبان سی پلاس پلاس برای مبتدیان آسان می‌کند و نشان می‌دهد که چگونه می‌توان الگوریتم‌های یادگیری ماشین تحت نظارت و نظارت نشده را از طریق مثال‌های واقعی پیاده سازی کرد.

این کتاب با تنظیم و بهینه سازی یک مدل برای موارد استفاده مختلف، به شما در انتخاب مدل و اندازه گیری عملکرد کمک می‌کند. شما با استفاده از کتابخانه‌های مدرن ++C مانند PyTorch C++ API، Caffe2، Shogun، Shark-ML، mlpack و dlib، تکنیک هایی مانند توصیه‌های محصول، یادگیری گروهی و تشخیص ناهنجاری را یاد خواهید گرفت. در ادامه، شما با استفاده از مثال هایی مانند طبقه بندی تصویر و تحلیل احساسات، شبکه‌های عصبی و یادگیری عمیق را بررسی خواهید کرد که به شما در حل مسائل مختلف کمک می‌کنند. همچنین، قبل از بررسی نحوه وارد کردن و صادر کردن مدل‌ها با استفاده از قالب ONNX، یاد خواهید گرفت که چگونه چالش‌های تولید و استقرار را در پلتفرم‌های همراه و ابری مدیریت کنید. با به پایان رساندن این کتاب، شما دانش واقعی سی پلاس پلاس و یادگیری ماشین و همچنین مهارت‌های استفاده از سی پلاس پلاس برای ساختن سیستم‌های قدرتمند یادگیری ماشین را در اختیار خواهید داشت.

اگر می‌خواهید با الگوریتم‌ها و تکنیک‌های یادگیری ماشین با استفاده از زبان محبوب ++C شروع به کار کنید، این کتاب یادگیری ماشین با سی پلاس پلاس برای شما مفید خواهد بود. این کتاب علاوه بر اینکه اولین دوره مفید در یادگیری ماشین با ++C است، همچنین برای تحلیل گران داده، دانشمندان داده و توسعه دهندگان یادگیری ماشین جذاب خواهد بود که به دنبال پیاده سازی مدل‌های مختلف یادگیری ماشین در تولید با استفاده از مجموعه داده‌ها و مثال‌های مختلف هستند. دانش پایه زبان برنامه نویسی سی پلاس پلاس برای شروع کار با این کتاب ضروری است.

تعداد بازدید: ۶۳۸
دیدگاه ها: ۰
تاریخ: ۲۰:۳۵:۲۸ ۱۳۹۸/۳/۶ دوشنبه
توسط: MotoMan
امتیاز: ۳
برچسب ها: Recommender Systems |

سیستم‌های توصیه گر، عملا تبدیل به یک الزام برای به روز، مفید و جالب نگه داشتن محتوای سایت برای بازدیدکنندگان شده اند. امروزه سیستم‌های توصیه گر همه جا هستند و به شما کمک می‌کنند که هر چیزی را از فیلم‌ها گرفته تا شغل ها، رستوران‌ها و بیمارستان پیدا کنید.

کتاب سیستم‌های توصیه گر کاربردی(Practical Recommender Systems)، به شما نشان می‌دهد که سیستم‌های پیشنهاد دهنده چگونه کار می‌کنند و مهم‌تر از همه این که چگونه آن‌ها را بسازید و در سایت‌های خودتان به کار گیرید.

تعداد بازدید: ۱۶۸۷
دیدگاه ها: ۰
loading...

لطفا منتظر بمانید...